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Internet Hosting Centers
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Internet centers host services for e-banks, e-auctions and other clients. Hosting centers then must
allocate servers among clients to maximize revenue. The limited number of servers, costs of reallocat-
ing servers, and unpredictability of requests make server allocation optimization difficult.

Based on the many similarities between server and honey bee colony forager allocation, we pro-
pose a new decentralized honey bee algorithm which dynamically allocates servers to satisfy request
loads. We compare it against an omniscient optimality algorithm, a conventional greedy algorithm,
and an algorithm that computes omnisciently the optimal static allocation. We evaluate performance
on simulated request streams and commercial trace data.

Our algorithm performs better than static or greedy for highly variable request loads, but greedy
can outperform it under low variability. Honey bee forager allocation, though suboptimal for static food

sources, may possess a counterbalancing responsiveness to food source variability.

Keywords
organization - decentralized algorithm

1 Introduction

The internet landscape offers myriad services such as
online stock trading, banking, ticket reservations, auc-
tions and shopping. Internet computing infrastructure
isbeing increasingly relied upon for day-to-day opera-
tions by a rapidly growing portion of human civiliza-
tion. It is difficult to provision servers efficiently for
such services because unconstrained customer behav-
ior is unpredictable, highly variable, and can create
sudden surges in request arrivals (Chase, Anderson,
Thakar, & Vahdat, 2001).
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An emerging market trend in internet comput-
ing is the proliferation of large hosting centers, based
on common hardware platforms, that host third-party
service application and content data on servers for a
fee (IBM, 2003; Verio, 2003). The managed hosting
center benefits from economies of scale and presents
an opportunity for dynamic capacity provisioning
while shielding content owners from capital over-
head and unpredictable demand. Given that the host-
ing fee may be negotiated on the basis of requests
served, the hosting center’s objective is to dynami-
cally alocate its finite servers to hosted services,
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taking into account switching costs, such that reve-
nue is maximized.

In this paper, we model the dynamic server alo-
cation problem and propose a biologically inspired
approach to this optimization problem in an internet
hosting center. Specifically, our work has been inspired
by the study of honey bee colonies and the behavior of
forager bees, characterized by decentraized and elemen-
tary interactions, that effect a complex collective behav-
ior to solve the problem of adequate food collection to
ensure survival of the colony. The new honey bee algo-
rithm models servers and request queues in an hosting
center as foraging bees and flower patches respec-
tively. We perform experimental work on a simulated
hosting center using request trace datafrom acommer-
cia service provider and from simulated request streams.
Our resultsindicate that the honey bee agorithm adapts
well to highly variable request streams.

The remainder of the paper is organized as follows.
Section 2 describes the internet hosting center allo-
cation problem and reviews the pertinent literature.
Section 3 describes the honey bee colony forager allo-
cation problem and its many parallels to the server
alocation problem. Section 4 describes how honey bee
colonies deploy forager bees to collect nectar among
diverse flower patches, and Section 5 outlines our honey
bee-mimicking server allocation algorithm. The greedy,
omniscient and optimal-static algorithms, against which
the honey bee agorithm is tested, are described in
Section 6. In Section 7, we describe the simulation
model and the three kinds of test data used in the
experiments. Test results from the comparison of the
performance of the honey bee agorithm against the
other algorithms are given in Section 8. Finally, in
Section 9, we discuss how our results provide some
confirmatory evidence for a survival advantage con-
ferred by the forager allocation mechanism in real
honey bee colonies.

2 Internet Hosting Centers

2.1 Service Hosting

Thereisatrend toward the internet computation model
where a single hosting provider manages content deli-
very of myriad internet services to requests from the
globa audience (IBM, 2003; Verio, 2003). This is
aready amulti-billion-dollar/year industry in the USA
(Markoff, 2003). The prevailing architecture of choice

for ahosting center isan ensemble of commodity servers
which are partitioned into clusters (virtual servers) and
configured to host internet services (Brewer, 2000).
Incoming streams of requests for a given service are
held on a service queue and spread by aload balancing
switch to any server that belongs to the cluster hosting
such aservice. Any server in the cluster can respond to
requests for service and a server from one cluster can be
reallocated to another cluster by reconfiguration, thereby
providing scalability and fault tolerance (Fox, Gribble,
Chawathe, Brewer, & Gauthier, 1997; Chase et a.,
2001). During a server’sreallocation from one cluster to
another, it becomes unavailable due to the time involved
in scrubbing the existing service application/data and
installing the new service application/data (Appleby
et al., 2001). Asfar as customers of any serviceis con-
cerned, the hosting center appears as a virtual server.

2.2 Service Level Agreements (SLAS)

Under this service hosting paradigm, the content
owners are clients who purchase resources on a pay-
per-use service level agreement (SLA). The hosting
provider shares resources among its clients. The host-
ing center benefits from an economy of scale due to
resource sharing and insulation from maintenance and
over-provisioning costsfor its clients. Thistype of out-
sourcing is attractive to clientsfor whom theinternetis
central to business strategy, but who do not wish to
invest in the infrastructure outlay or do not have thein-
house technical expertise to build and maintain such a
service infrastructure.

Pay-per-reguest-served is a common way in which
a pay-per-use SLA is negotiated between the hosting
center and the content owner. Such an SLA implic-
itly acknowledges that limited servers, reallocation
costs, and uncertainty may lead to overloading and lost
requests (Jayram, Kimbrel, Krauthgamer, Schieber, &
Sviridenko, 2001). Consequently, the prime incentive
of the hosting center is to maximize the total value of
requests served.

2.3 Internet Server Allocation Problem

Given multiple clients, the internet hosting center thus
faces the following revenue collection problem: how
to utilize its limited number of servers to collect as
much revenue in SLA fees as possible over a lengthy
time horizon from its clients. At each moment of the
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entire time horizon, it in effect has to decide which of
its servers to allocate to each client. It may decide to
keep the current allocation or it may decide to reallo-
cate some servers from one client to another. If it real-
locates a server from one client to another then that
server suffers a downtime during which it earns no
revenue. The stream of future request arrivals for each
client is unknown and highly variable. The average
time to serve a request and the fee paid per request
differ from client to client. The request queueing
behavior, in terms of how long on average a customer
iswilling to wait to be serviced, differs among clients
as well. A revenue opportunity is lost if a customer
balks, i.e., leaves the queue before being served.

2.4 Related work

There is some previous work on the internet hosting
dlocation problem, but most of it is proprietary
(Ensim, 2004; HP, 2004; Sychron, 2004). A paper by
researchers at IBM (Jayram et al., 2001) proves that
no finite competitive ratio guarantee is possible for
any allocation algorithm which has no knowledge of
the future. The authors give a theoretical algorithm
which, like our omniscient algorithm, requires know!-
edge of the future, and hence could not be used in
practice. They also describe arelated heuristic, which
does not require such knowledge but apparently was
not implemented or tested at the time. Their heuristic
turns out to be of precisely the same type as our
greedy algorithm, to the extent that can be determined
from their paper. (The agorithm employs a forecast-
ing module, the details of which are not provided in
Jayram et a., 2001). Therefore, as we intended, our
greedy agorithm provides a good point of comparison
with conventional optimization methods.

The problem of dynamically allocating resources
as unpredictable requests arrive has been studied in a
general abstract context as the K-server problem (Man-
asse, McGeoch, & Sleator, 1988). In this formulation,
we are given a metric space S and K mobile servers
that reside at points in S. When a reguest arrives at
point x € S, it must be processed by moving one of the
K serversto x, at acost equal to thedistancemovedin S
The objectiveisto minimize cost in serving asequence
of requests. However, in the K-server literature, the on-
[ine minimum competitive ratio is used as the criterion
of agorithmic quality, which isnot very meaningful in
our context. This may indeed be fortunate since no

deterministic algorithm can guarantee a competitive
ratio better than K (Manasse et al., 1988).

Dynamic resource alocation has been well stud-
ied in the context of effectively exploiting available
resources to realize certain performance goals. Sev-
eral papers address the problem of sharing processor
resources between competing applications to improve
throughput and/or realtime response (Dusseau, Arpaci,
& Culler, 1996; Banga, Druschdl, & Mogul, 1999; Ford
& Susarla, 1996; Jones, Rosu & Rosu, 1995, 1997;
Waldspurger & Weihl, 1994, 1995). Numerous papers
focus on sharing processors in distributed systems of
networked machine for throughput (Baker, Buyya, &
Laforenza, 2000; Baratloo, Dasgupta, & Kedem, 1995;
Baratloo, Itzkovitz, Kedem, & Zhao, 1998; Buyya,
Abramson, & Giddy, 2000; Czajkowski et al., 1998;
Dasgupta, Kedem, & Rabin, 1995; Dusseau & Culler,
1997; Hill, Donaldson, & Lanfear, 1998; Litzkow,
Tannenbaum, Basney, & Livny, 1997). However,
these research efforts focus on sharing CPU cycles
among competing applications as opposed to a whole
server being shared in a serial manner, and moreover
they do not consider reallocation downtime. A smaller
number of papers have considered the problem in a
context similar to the one described in this paper. Wolf
and Yu (2001) propose a server alocation algorithm
for the case where a single server can handle requests
for multiple services and the performance objective
is to minimize response time by load balancing. De
Farias, King, Squillante, and Roy (2002) formulate
the server alocation problem in a dynamic program-
ming framework but propose an approximate linear
programming solution given that the dynamic pro-
gramming approach is computationally infeasible. It
computes an alocation policy based on a particular
arrival rate model. In contrast, we do not make any
apriori assumptions regarding request arrivals to make
alocation decisions. Palmer and Mitrani (2003) exam-
ine the server alocation problem and propose non-
optimal heuristics that are easily implementable. How-
ever, only a simple case of hosting 2 services with
total of 9 serversis considered. Chase et al. (2001) pro-
pose an economic approach to server allocation for
cases where energy conservation is the primary goal.
Finally, Appleby et al. (2001) propose an SLA based
approach where monitoring agents provide load and
performance feedback to a central resource director
which makes alocation decisions. In our approach,
feedback is provided by all servers in the hosting
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center but individual servers are responsible for alo-
cation decisions.

3 Honey Bee (Apismellifera) Colonies

The honey bee (Apis mellifera), indigenous to Europe,
Africa, and the Middle-East, has been introduced to
other parts of the world by beekeepers. Colonies of
honey bees have been studied extensively for many
years and a significant volume of literature has been
devoted to understanding their social organization
(Sedley, 1995 and references therein). The social organi-
zation is adapted to colony survival and propagation;
particularly in colder regions (Northern Europe and
North America), a colony must accrue adequate honey
to sustain itself through the winter. It must, therefore,
coordinate its foraging activities in order to efficiently
collect food during summer months when the sur-
rounding countryside is replete with florawhile facing
competition from other colonies aswell as other forag-
ing insects.

Typicaly, the honey bee colony is comprised of
approximately 20-50 thousand bees with one queen, a
few drones, and the rest workers. Depending on age, a
worker bee specializesin performing different tasksthat
range among cleaning, maintenance, guarding, tempera-
ture regulation, and foraging for food (nectar, pollen,
water). During infancy, worker bees serve the queen
and nurse the young while adulthood is spent in forag-
ing endeavors. Approximately 25% of worker bees are
engaged in foraging to satisfy an annual reguirement
of up to 120 kg of nectar, 20 kg of pollen and 20 liters
of water. Nectar collection isa principa foraging activ-
ity. The bee colony requires approximately 50 kg of
nectar as a reserve for winter survival—without it the
gueen freezes and the colony dies. During the summer,
the colony consumes approximately 70 kg of nectar. A
significant portion of this nectar goes to meet the
energy demands of the foragers which exploit at least
100 km? of the surrounding countryside.

3.1 Forager Allocation Problem

In colder climate zones such as much of North Amer-
ica, blossoming of florathat yields nectar is regulated
by seasonal and daily variations. At the seasonal level,
theflorais scarce in winter and abundant in summer. On
adaily level, the availability and quality of nectar vary

directly with micro-climatic conditions, the blooming/
withering cycle, and exploitation. Consequently, within
the space of afew days, conditions may giveriseto a
dearth or an abundance of nectar supply. Effectively,
nectar is available during about 10 weeks of summer
each year. During this period, not only is the availabil-
ity of nectar unpredictable but also the scale of fluctu-
ation from dearth to abundance is unknown. It is not
uncommon for a colony to experience abundance-to-
dearth nectar in-take rate fluctuation by a factor of
more than 100:1 within aday or so (Seeley, 1995).

A honey bee colony has a limited number of nec-
tar foragers which are distributed among the available
flower patches in the surrounding countryside. A for-
ager can be reallocated from one patch to another but
requirestimeto learn thelocation of anew flower patch.
Given the volatility of flower patches and uncertainty
of nectar supply, the forager allocation problem is to
dynamically allocate foragers among flower patches
such that nectar intake is maximized.

Consider a honey bee colony with N nectar forag-
ers, and forage sitesindexed by i. Let f; (x;) denote the
value returned from the ith forage site if the number
of foragers collecting nectar from there equals x;. If
the functions () did not change over time, the resul-
ting static forager alocation problem would be;
max Y. f; (x) subject to > 0 and Y. % < N. Apply-
ing the Karush—Kuhn-Tucker conditions immediately
shows that the optimal static solution has the form

fi/(x) = A VX >0; f/(0) <A Vx = 0.

That is, the marginal contributions are equal at each
active patch. Thisisintuitively obvious because if the
margina contribution f;"(x;) a patch i exceeds the
marginal contribution at another active patch j, more
nectar could be obtained by shifting a small amount of
forager resource fromj toi.

3.2 Server and Forager Allocation Problem
Parallels

At the outset of our research, it was immediately obvi-
ousthat the server and forager allocation problemswere
similar, at least on asuperficia level. The allocation of
servers to collect revenue in internet hosting centers
paralels the alocation of foragers to collect nectar in
honey bee colonies; the ensemble of serversis analo-
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Table 1 Parallels between server and forager allocation problems.

Internet hosting center

Honey bee colonies

An ensemble of N servers
Unit of alocation: Single server

Host M services (web-application) which are accessed
by requests

A group of servers with the same service application
serving requests from a specific service queue

Timeto service arequest will be dependent on the ser-
vice application

Time taken by a server to find arequest to serve at a
service application

Server switching to another service incurs downtime
due to purging and installation of service application/
data

A service application and its requests have a value-
per-request

Variable rates of requests arrival and balking behavior

An ensemble of N nectar foragers
Unit of allocation: Single nectar forager

M distinct flower patchesin the surrounding coun-
tryside.

A group of nectar foragers collecting nectar at a spe-
cific flower patch

Timeto travel will be dependent on the location of
the flower patch

Time taken by aforager to collect nectar at aflower
patch

Forager switching to another flower patch incurs
switching cost due to time spent learning the loca-
tion and successful discovery

A flower patch has quality of nectar (sugar concen-
tration)

Variable rates of flower patch quality, density and
replenishment

gous to a colony of forager bees; the service queues
relating to hosted internet services are analogous to
sources of nectar to be exploited profitably. Our exam-
ination at afiner level of detail then revealed aremark-
ably close mapping between the two problems. This
strong similarity motivated our biomimicry approach.

A hosting center with a certain number of serv-
ers hosting multiple internet clients is analogous to a
honey bee colony with a certain number of bees forag-
ing a multiple sitesin the surrounding countryside. The
amount of time needed by a server to earn revenue
from aclient depends partly on client characteristics,
but also degrades as more servers are allocated to that
client. Similarly, the amount of time needed by a for-
ager to return with aload of nectar depends partly on
the site’s characteristics, but also degrades as morefor-
agers are allocated to that site. Thisand other similari-
ties are detailed below and in Table 1.

The service request queues which buffer arriving
requests are analogous to available flower patches
(forage sites). The request stream behavior and flower
patch volatility are similar in their variability. Request

streams are variable due to fluctuating arrivals and
balking behavior; flower patches are variable due to
fluctuationsin micro-climate, quality, density and nec-
tar replenishment. In a hosting center, a virtual server
is composed of one or more servers collecting revenue
from its service queue. The unit of augmentation or
reduction is a single server. In a honey bee colony this
isequivalent to the set of forager bees collecting nectar
from a specific flower patch. The unit of augmentation
or reductionisasingle forager bee. A server in a host-
ing center collects some value-per-request-served while
aforager beein ahoney bee colony collects some mol/L
sugar concentration from the nectar.

The time to service arequest in a hosting center
depends on the service application of the internet service
and the time to find a request to serve will be a func-
tion of the number of serversallocated to the servicein
question and the request arrival pattern. In ahoney bee
colony, the travel time to a specific forage site depends
on its location in the countryside, and the time needed
to collect nectar will be afunction of the number of for-
agers allocated to the forage site in question and the
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rate of nectar replenishment of the flowers at that site.
Different internet services have different values of ser-
vice-time-per-request and value-per-request-served, just
as different forage sites have different values forager-
round-trip-time and nectar quality.

Finally, when aserver isreallocated from oneinter-
net serviceto another, it becomes unavailable for afixed
time duration while it undergoes a process of re-
assignment. Similarly, when a forager bee is reallo-
cated to anew forage site, it becomes unavailable due
to time spent learning the location of the new forage
site (Seeley, Camazine, & Sneyd, 1991).

4 Honey Bee Solution: Self-Organizing
Forager Allocation

Colonies of socia insects (bees, ants, wasps, termites)
possess what has been classed as Svarm Intelligence. A
broad definition of the term implies a sophisticated
collective behavior borne out of primitive interactions
among members of the group to solve problems
beyond the capability of individual members. Such col-
oniesare characterized by (i) self-organization: Decen-
tralized and unsupervised coordination of activities, (i)
adaptiveness: Response to dynamically varying envi-
ronments, and (iii) robustness: Accomplishing the
group’s objective even if some members of the group
areunsuccessful. It has been suggested that these group
level adaptive propertieslend themselveswell to distrib-
uted optimization problems in telecommunications,
manufacturing, transportation and so on (Bonabeau,
Dorigo, & Theraulaz, 1999; Bonabeau & Meyer, 2001;
Cicirello & Smith, 2001).

A model of self-organization that takes place within
acolony of honey bees has been presented by Seeley
(1995). The model describesinteractions between mem-
bers of the colony and the environment that leads to
dynamic distribution of foragers to efficiently collect
nectar from an array of flower patches (food sources)
that are capricious in terms of profitability to the col-
ony. Foraging beesvisiting flower patches return to the
hive with nectar and with a profitability rating of
respective flower patches. At the hive, forager bees
interact with receiver bees to offload collected nectar.
Thisinteraction provides feedback on the current status
of nectar flow into the hive. This feedback mechanism
sets a response threshold for an enlisting signal. An
amalgamation of response threshold and profitability

rating (function of nectar quality, nectar bounty and
distance from the hive) influences the length of the
enlisting signal known as the waggle dance.

The waggle danceis performed on the dance floor
where inactive foragers can observe and follow. Effec-
tively, each active forager bee provides feedback on her
local flower patch while observing bees have access to
the set of attractive food sources being capitaized by the
colony. However, individual foragers do not acquire
the full set of global knowledge but, rather, randomly
select adance to observe from which they can learn the
location of the flower patch and leave the hive to forage.

The resulting self-organized proportionate alloca-
tion pattern, derived from multiple and proportionate
feedback on goodness of food sources, is described by
Sedley et al. (1991) and validated by experimenta study
on areal honey bee colony. The model given by Bar-
tholdi, Seeley, Tovey, and Vande Vate (1993) predicts a
steady-state pattern of forager allocation where rate of
value accumulation equalizes among forage sites being
exploited, i.e., self-organizing allocation resultsin equal
average nectar return ﬁ%‘-) = uViwheref, (x) denotes
the value returned from x; foragers collecting nectar at
theith forage site.

Intriguingly, this allocation pattern is not optimal
(unlike the famed hexagonal comb structure), although
Bartholdi et al. (1993) prove that no allocation is more
than twice as efficient. Why would a sub-optimal for-
aging allocation mechanism evolve in honey bee colo-
nies? We suggest that the static sub-optimality is re-
lated to the dynamic nature of the foraging environ-
ment. Flower patch availability and quality may wax and
wane rapidly even during a single day. We believe that
areal honey bee colony is quite adaptive to changesin
flower patch availability and quality, and that its allo-
cation method is considerably less sub-optimal when
evaluated in a redistic dynamic environment rather
than a static one. This performance quality was a key
motivation for our biomimicry algorithm.

One possible explanation for a performance dif-
ferenceisthat, as noted previously, static optimization
requires equalization of derivatives (margina rates).
That is, static optimization requires f,"(X;) = A for all
active patchesi. This would seem to require a marginal
rate bee for each patch, abee who acquires nectar value
at rate f; (X)) —f, (X; — 1), thus limiting migration rates
to one bee at atime. If this explanation is correct, the
honey bee colony trades off static optimality for adap-
tiveness. It has no margina rate bee, but it has the abi-
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Figure 1 An Internet hosting center with two services hosted.

Table 2 Mimicking key features of forager allocation.

Forager alocation

Server allocation

Waggle dance

Dance floor

Waggle dance duration
Flower patch location
Following a waggle dance

Waggle dancing

Advertisement
Advertboard
Advertisement duration
Web-site identifier
Reading an advertisement

Posting an advertisement

lity to migrate many bees at once, increasing its respon-
siveness to changed circumstances.

5 Honey Bee Server Allocation
Algorithm

When we began work on the server alocation prob-
lem, we selected the honey bee forager algorithm for
inspiration because (besides the obvious superficial
resemblances) the rapidly changing request streams,
the significant downtime cost of reallocation, and the
distributed nature of the processors all matched to per-
formance strengths of honey bee foraging. The generad
ideais depicted in Figure 1: At any time each proces-
sor isdevoted to servicing one class of requests (just as
each bee is devoted to foraging at one flower patch);
after a processor completes a transaction, it places an
advertisement on an advertboard with some probabil-
ity (just as returning foragers perform a waggle dance

with some probability); processors from time to time
randomly read from the advertboard and are thus
recruited to service a different request class (just as
returned foragers may berecruited to different patches).

Let any server in a hosting center be either afor-
ager or a scout server. As outlined in Table 2, let the
dance floor be represented by an advertboard, a wag-
gle dance be represented by an advertisement and its
duration by the length of time an advertisement post-
ing appears on the advertboard. Furthermore, let a
flower patch location be represented by a service iden-
tifier while waggle dancing and following a waggle
dance are represented by advertisement posting and
advertisement reading respectively. Consider an inter-
net hosting center with N servers partitioned into M
groups called virtual serversV, ... V,,_;. There are M
service request queues Q, ... Qy_, which buffer the
stream of customer requests to be served by respective
virtual servers. Each virtual server V, is allocated n

servers, n. > 0, z'i"'_‘g n. = N, and the unit of allocation
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[A] Initidization—s e V; serving Q;, Advert posting probability p,
Advert reading probability r; , Revenuerateinterval T, ,

Advert reading interval T,

[B] forever
[C] whileQ # Empty do
Serve request;
if T,, expired then
compute revenue rate;

adjust r; from lookup table;
if Flip(p)==TRUE then Post Advert;
if T, expired && Read(r;)==TRUE then

/* randomly select an advert or avirtual server */
Select advert( if forager) or Virtual Server V, (if scout);

Read advert id V; ( if forager);
if V=V, then Switch(V, );
endwhile
endforever

Figure 2 Server behavior in the honey bee allocation algorithm.

isasingle server. Let the cost of server redlocation, i.e.,
length of timethe server isunavailableasit undergoesre-
purposing, be C time units. Assume that a server
§ € 'V, serving requests from service request queue Q
is paid v, the value-per-request-served. Figure 1 illus-
trates the salient features of the honey bee algorithm in
a hosting center with two services hosted.

The behavior of any server in the hosting center is
controlled by the pseudo-code of Figure2. A server
s €V, on completion of each request from Q,, will
attempt with probability p to post an advert on the
advertboard with duration D = G A where A denotes
the advert scaling factor. Also, it will attempt with
probability r; to read a randomly selected advert from
theadvertboard if itisaforager or randomly selectaV,
j:0...(M—1)if it is a scout. The probability r; is
dynamic and changes as afunction of the forager/scout
server’s own revenue rate and hosting center’s overall
revenuerate. Therevenuerate, P, for aserver 5 isgiven
by P, = CJTTI where R is the total number of requests
served by a given server in the time interval T,. The
hosting center’ soveral revenuerate, Py, ISgiven by
Prosing = Trogms je0 GR where R denotes the total
number of requests served by V, in the time interval
Thosting: A SENVer s €V, serving queue Q, determinesits
profitability by comparing the revenue rate P, with
Phosing: It Updates r; according to the rules shown in
Table 3. Theserules quantitatively model forager behav-

Table 3 Rules for adjusting probability of reading the
advertboard.

Revenue rate Plread] r,
P; < 0.5Pging 0.60
0.5Poging < Pi < 0.85P;ging 0.20
0.85P0ging < P; < L.15P; g 0.02
1.15P oging < P, 0.00

iorinreal honey bee coloniesgiven that waggle dancing
foragers never get recruited to another patch and forag-
ers use globa information (hive's nectar intake rate
cued by time to find a receiver bee) to decide whether
to dance or not. Thus, bees at a profitable patch have a
decreased chance of following another waggle dance.

6 Implementation and Testing: Server
Allocation Algorithms

We implemented the honey bee algorithm in a simu-
lated environment and tested it against three other
algorithms on several different arrival patterns. This
section describes the three other algorithms; the next
section describes the simulation environment and the
request arrival test data.
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We now detail three alternative algorithmsto allo-
cate servers to competing hosted services. The basic
challenge is to determine server demand of each serv-
ice based on its current request arrivals. We assume
there are M groups comprised from n servers, called
virtual servers V... V,,_;, and service queues
Qo - Qu_1- A server s eV, serving queue Q, is paid ¢;
cents for each request served.

6.1 Omniscient

The omniscient algorithm provides an upper bound on
possible profitability. (It would be both informationally
impossible and computationally prohibitive in prac-
tice.) It computes, by dynamic programming, the opti-
mal server allocation given complete knowledge of
future request arrivals. Let the time horizon be divided
into T time steps indexed by t=1, ..., T. Also, let §
denote the state of the system at the start of time step t,
including the allocation of servers among hosted serv-
ices, and residual requests from time stept—1. Let A,
denote the arrivals during time step t. We let T denote
an alocation decision for atime step. Let P (wt, S A)
denote the revenue earned by rt during atime step with
initial state S and arrival A. Similarly, let f (r, S A)
denote the state of the system which would eventuate
at the start of the next time step, if the current time step
startsin state S, allocation w is used in the current step,
and the arrivalsis A. Definev™(S.,,) = 0, i.e, thereis
no state-dependent salvage value at the end of thetime
horizon. Therefore, the value function of the omnis-
cient policy for time step t will be

V(S) = max{P(r, §, A) + Vi i(f(m, S, A))}

and the corresponding optimal policy for time step t
will be given by

mi (S) = ag max{P(rn, §, A) + Vv i(f(m, §, A)) .

The recursive nature of the value function calls for
dynamic programming to solve for the optimal alloca-
tion policy decisions over the complete time horizon.
It would be remiss of us not to point out that this algo-
rithm is greatly time and space intensive as a function
of a problem size. For example, to allocate 50 servers
across 3 virtua servers, using 11 interpolation buckets,
requires at least 1.3 GB for the interim results table
and exploration of 167 million states per time step.
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6.2 Greedy

The greedy alocation algorithm represents a conven-
tional heuristic approach to the problem. At time step
t, if we were omniscient, we would choose an alloca-
tion wt that maximized the sum of revenue during the
time step, P (w!, §, A), plus the future revenue that
could be earned if we began time step t + 1 in state
f(n, S, A). The greedy agorithm ignores the sec-
ond term of this sum. Part of the rationale for being
myopic is that we do not know the future, and hence
cannot evaluate the second term. Also, as we have
seen, such evaluations are both time and memory
intensive.

To maximize P (=t S, A) exactly also would
require knowledge of the future. So the greedy algo-
rithm requires a forecast Ar of A, and it chooses

n&(S) = arg max{P(r, S, Ay

The state is then updated according to

S+1 = (7 S A)-

As stated in the introduction, the heuristic proposed
independently in Jayram et al. (2001) is identical to
greedy. This confirms that greedy represents a stand-
ard heuristic approach to the problem.

Jayram et a. (2001) do not report an implementa-
tion of greedy, nor do they even specify a forecasting
method. (Such details may have been available but
considered proprietary.) In our implementation of
greedy, we used the natural forecast A, = A,_,. The
idea is that the immediate past is the best available
guide to the uncertain future. Thus, the algorithm
chooses nf§, = arg max {P(m, S, Ai_1) }-

6.3 Optimal-Static

The optimal-static algorithm omnisciently chooses the
best from among all static (fixed) alocations. This
reflects an upper bound on the current level of revenue
of many hosting centers, which do not change their
allocations more often than once a month. Their reve-
nue will be lower than optimal-static revenue because
it is impossible for them to know next month’s re-
quest arrivals in advance. The best static allocation
policy for a time horizon split into T time steps is
defined asfollows:
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[A] Initidlization— Advertboard, Advert expiry time T,

Current time T,
[B] forever
[C] while Advertboard = Empty do
find advert;
if advert. T, < T, then
expunge advert;
endwhile

endforever

Figure 3 Advertboard manager for the honey bee allocation algorithm.

T
Nyatic = arg manx Z P(ﬂ:’ 3’ At)
t=1

subject to
S+1 = f(m, S, AD.

Thus, the same allocation policy my,; is used in every
time step and the total revenue will be given by

T
2 P(Tgaic: S A-
t=1

7 Implementation and Testing:
Simulation Model and Arrival Data

In this section we describe the simulation model of the
dynamic server alocation problem. We have devel-
oped discrete event simulation models for the four
server alocation algorithms—honey bee, omniscient,
greedy, and optimal-static. All algorithm simulation
models are implemented in C++SIM (Little, 1994) on
an IBM X Serieswith Linux operating system. Thefol-
lowing assumptions are common to all models. All
servers are homogeneous in terms of processing
capacity and employ afirst-come-first-served schedul-
ing policy. Thetime to serve arequest is exponentialy
distributed with a mean service time depending on
reguest type. Each server is paid a fixed revenue per
request served, the amount depending again on request
type. A reallocated server becomes unavailable for a
migration downtime (Appleby et a., 2001). Thismigra-
tion cost isincurred because a server must be purged of
its current application and data, then reloaded with the
new application and data of the internet service to

which it is being realocated. A stream of requests
arriving for aparticular virtua server isheldinaservice
gueue. Each request has a waiting threshold to receive
service and on crossing this threshold, a request ran-
domly chooses to keep waiting or balk. Each virtua
server has an independent request stream.

In the honey bee model, servers can bereallocated
at any time. One server per virtual server is designated
asascout. Therest are designated as foragers, reflect-
ing the low proportion of scoutsin real honey bee col-
onies (Seeley, 1995). A scout server randomly real-
locatesitself to any virtual server in the hosting center
at any time while forager servers randomly reallocate
themselves in response to an advert read for a particular
virtua server. Each server (scout/forager) may advertise
itsown virtual server by placing an advert on the advert-
board with given time duration. As depicted in the
pseudo-code of Figure 3, the advertboard is kept up to
date by purging adverts with expired time duration.

In the omniscient and greedy models, servers are
reallocated at the beginning of each alocation interval.
For the optimal-static model, servers alocated at the
beginning remain unchanged for the complete duration
of the simulation and, therefore, do not suffer any reallo-
cation downtime costs. All simulation models except
honey bee and greedy require an allocation policy
which iscomputed offline using the request arrival data.

The parameters and values used for the simulation
models are depicted in Table 4. In general, we chose
environment parameter val ues based on data from stud-
ies or observation. However, we had to limit the total
number of servers so that time/space constraints could
be satisfied when computing allocation policiesfor the
omnisicient algorithm, and to manage the memory
footprint when running simulations. The server reallo-
cation downtime results from scrubbing existing and
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Table 4 Simulation parameters.

Parameter Vaue
Common:

Total number of Servers 50

Server reallocation downtime 300 seconds
Revenue per reguest served 0.5 cent

Exponentially dist. mean servicetime
Request waiting threshold

Balk rate

Balk probability

Honey Bee:

Advert posting probability

Advert reading probability (initial)
Scouts per hosted service

Revenue rate computation interval
Omniscient/Greedy:

Server allocation interval

15 milliseconds
10 seconds
1.01 seconds

0.04

0.10
0.10
1

5 seconds

1800 seconds

installing new application/data. Appleby et a. (2001)
give 270-330 seconds downtime for servers and net-
work used in their hosting center setup. The request
waiting threshold is determined by the behavior of cus-
tomers when experiencing delay between a mouse-
click and receiving a response. Nielsen (2000) sug-
gests that delays greater than 10 seconds lead to cus-
tomers becoming distracted and likely to click-away
(bak). The parameter balk rate represents how often
customers, having waited more than 10 seconds for
service, think about balking, and the parameter balk
probability represents the likelihood of balking on
each occasion. Given that a balking rate of 1.01 sec-
ondsis chosen for each waiting customer, alow balking
chance of 4% is chosen based on appropriate scaling.
The revenue per request served and the mean service
times are arbitrarily chosen. The exponential distribu-
tion for the service timeis conventional.

For the honey bee algorithm, we depended again
on data from studies, together with common-sense
scaling reasoning, to determine the parameter values.

The advert posting probability was chosen to be 0.1
since approximately 10% of returning foragers in the
real bee colony perform waggle dances (Seeley, 1995).
In effect, servers that are busy will post adverts more
frequently. Each server decidesto read the advertboard
upon expiration of the advert reading interval and hasa
chance of succeeding equal to reading probability. In
order to limit unnecessary server reallocation down-
time, the following is observed:

Advert reading interval
Advert reading probability

>> Server reallocation downtime.

Therefore, alow reading probability of 0.1 was chosen.
The revenue rate computation interval determines the
frequency with which servers receive new feedback on
revenue prospects. Thisinterval is chosen to be 5 sec-
onds so that feedback on short bursts of request arriv-
asis minimized bearing in mind the 15 milliseconds
mean service time. We did not alter the honey bee
algorithm’s parameter values after starting computa-
tional experiments (as is often done to improve a heu-
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Request arrival traces from real internet services

Mean Request/s

0 5 10 15 20
Time (Hours)

Service:C ——
Service:D ———

Service:A ———
Service:B ——

Figure 4 Real internet service request streams.
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Figure 5 Synthetically generated
Poisson request streams.

inhomogeneous

ristic’s performance). All of the results we report here
are for the original untuned parameter values.

We use trace data from a commercia service
provider and synthetically generated request streams
to evaluate algorithm performance. The trace data,
depicted in Figure 4, are from an international com-
mercia service provider (a confidentiality agreement
restricts us from disclosing its name). The simulated
data are derived in two ways—drawn from inhomoge-
neous Poisson processes, and drawn from a heavy tail
distribution as depicted in Figures 5 and 6. The inho-
mogeneous Poisson model was developed by Brown
et a. (2002) as a good fit to real data; it is controlled
by a variability parameter which is the ratio between
the maximum and minimum intensities of the arrival
process. Redlistic values of the variability parameter
range from approximately 10 to 100 or more (Chase et
a., 2001; Arlitt & Jin, 1999; Crovella, 1998). The heavy
tail distribution characteristics have been observed

Heavy tail request arrivals

45000
Heavy-A ———
40000 f Heavy-B ———
Heavy-C ——
35000 r Heavy-D ———
= 30000 |
Q
g 25000 f
(=2
= 20000
S 15000 |
10000
5000 f
0 ‘
0 5 10 15 20

Time (Hours)

Figure 6 Synthetically generated heavytail request
streams.

through statistical analysis of heavily accessed inter-
net services such as the 1998 Winter Olympics held in
Nagano Japan (Gelenbe, 2000). We use the Cauchy dis-
tribution, which has undefined mean and standard
deviation, to generate heavy tail request streams.

8 Experimental Results

In this section, experimental results are presented com-
paring the performance of honey bee agorithm with
omniscient, greedy, and optimal-static algorithms
using synthetic request arrival dataaswell astrace data
from a commercial service provider. These experi-
ments consider the cases of a hosting center with 2, 3,
and 4 virtual servers (internet services) composed from
atotal of 50 servers. We use the performance metric of
total revenue earned.

8.1 Experiments

Therequest arrival trace datafrom acommercial inter-
net service provider as shown in Figure 4 were used to
run ssimulations of a hosting center configured to host
2, 3, and 4 internet services. The request arrival traces
labeled service-B/C were used for hosting 2 services,
service-A/B/C were used for 3 services hosted and all
traces were used for 4 services hosted. The revenue
earned by the hosting center over a 24 hour period
using the honey bee, omniscient, greedy and optimal
static allocation algorithms for each service hosting
configuration is depicted in Table5 and normalized
performance is depicted in Figure 7. As expected,
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Table 5 Revenue from real internet service traces.
Revenue($)
Algorithm 2 services 3 services 4 services
Omniscient 1,071,741.83 1,352,872.12 1,415,403.63
Honey bee 1,050,110.00 1,238,470.00 1,292,460.00
Greedy 1,043,400.00 818,040.00 1,170,620.00
Optimal-static 844,822.00 1,108,360.00 1,242,390.00
Table 6 Revenue from synthetically generated request streams.
Mean revenue($)
# Req. Honey Greedy Optimal-static Omniscient
2 4:1 728,141.60 781,654.20 785,380.20 785,382.63
4 4:1 786,873.00 832,072.25 860,978.75 860,985.69
2 10:1 945,781.35 852,730.00 841,992.15 1,179,710.86
4 10:1 992,512.95 920,372.50 900,523.25 1,311,975.69
2 Heavy 972,323.30 951,800.05 921,498.70 1,048,839.73
4 Heavy 1,004,615.00 926,127.50 965,757.25 1,240,434.94
Normalized performance for real request arrivals per forms Opti mal-static by 19.5% (2 services), 10.5%
T T — T (8 services), and 3.9% (4 services). It is evident from
g . o] the experimental results that the honey bee algorithm
E 08¢ — ] | adapts well to the highly varying request arrival pat-
E 06 | - terns of real customers of internet services.
3 The synthetically generated request streams (inho-
N 04 . .
E mogeneous Poisson and heavy tail) were used to run
s 027 simulations with the hosting center configured to host
0 ‘ ‘ ‘ 2 and 4 internet services. Examples of these request
! 2 3 4 3 streams are depicted in Figures 5 and 6. The mean reve-
Services Hosted nue earned by the hosting center over a 24 hour period
Omni Greedy —— using all four algorithmsis depicted in Table 6 and nor-
Honey Opt-Stat

Figure 7 Revenue normalized with respect to omnis-
cient algorithm for real internet service traces.

the omniscient algorithm outperforms al three algo-
rithms. The honey bee algorithm performs the best of
the other three algorithms, earning revenue within 2%
(2 services), 9.2% (3 services) and 9.5% (4 services) of
the omniscient algorithm’s. The honey bee algorithm
outperforms the greedy algorithm by 0.6% (2 serv-
ices), 33.9% (3 services), and 9.5% (4 services); it out-

malized performance is depicted in Figures 8-10. The
revenues reported are the mean revenue based on 20
simulation runs for each combination of configuration
and request stream type. For each simulation run, adif-
ferent initial seed value was used in the distribution func-
tion utilized for generating respective request streams.
In the case of low variability inhomogeneous Poisson
request streams with a peak-to-trough ratio of 4.1, the
honey bee agorithm is outperformed by the greedy,
optimal static and, as expected, omniscient algorithms
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Normalized performance for inhomogenous request arrivals
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Figure 8 Revenue normalized with respect to omnis-
cient algorithm for 4:1 inhomogeneous Poisson request
stream.
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Figure 9 Revenue normalized with respect to omniscient
algorithm for 10:1 inhomogeneous Poisson request stream.

for both 2 and 4 services hosted. The greedy algorithm
outperforms honey bee algorithm by 7.3% (2 services)
and 5.7% (4 services). The optimal-static and omniscient
agorithms outperform honey bee agorithm by approx-
imately 7.9% (2 services) and 9.4% (4 services). Inthe
case of higher variability inhomogeneous Poisson re-
quest streams with a 10:1 peak-to-trough ratio, the
honey bee algorithm is, of course, outperformed by
omniscient algorithm but it performs better than greedy
or optimal-static algorithm. It performswithin 19.8%
(2 services) and 24.3% (4 services) of the omniscient
algorithm. It outperformsthe greedy agorithm by 10.9%
(2 services) and 7.8% (4 services); it outperforms opti-
mal-static by 12.3% (2 services) and 10.2% (4 services).
In the case of heavy tail request streams, the perform-
ance of the honey bee agorithm is similarly good. It
performs within 7.3% (2 services) and 19.0% (4 serv-

Normalized performance for heavy tail request arrivals
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Figure 10 Revenue normalized with respect to omnis-
cient algorithm for heavy tail request stream.

ices) of the omniscient algorithm. It outperforms the
greedy agorithm by 2.2% (2 services) and 8.5% (4 serv-
ices) while, against optimal-static, it outperforms by
5.5% (2 services) and 4.0% (4 services).

The main qualitative observation we draw from
the experimental results is that the honey bee algo-
rithm performs very well, except in situations of low
variability. We emphasize that all these results are for
an untuned honey bee algorithm. That is, we chose the
parameter values for the honey bee algorithm based on
biological dataor common-sense scaling reasoning, as
described in previous sections, and froze those values
before we ran any test cases. Despite the stringency
imposed by not tuning, our algorithm adapts well to
dynamic changes in the arrival patterns. Tuning these
parameters using two-level fractional factorial experi-
ments resulted in aperformance difference of only 5.5%
between the best and worst parameter tunings, indicat-
ing that the honey bee agorithm is robust across a
range of parameter settings (Nakrani & Tovey, 2004).
We also tested all four algorithms with inhomogene-
ous Poisson request streams for other degrees of inho-
mogeneity, up to a 30:1 ratio, for the hosting center
configured to host 2, 3, and 4 internet services and
observed the same qualitative behavior. This is illus-
trated in Figures 11-13 where we use a numerical scale
to denote degree of inhomogeneity (0 = 1:1, 30 = 30:1).
We also performed atest at low variability and alow
customer demand rate (half the usual number of cus-
tomers per server). In this scenario, the honey bee ago-
rithm performs as well as the other methods, because
virtual server capability never comes closeto being satu-
rated. Hence there is enough excess capacity to absorb



Nakrani & Tovey Honey Bees and Dynamic Server Allocation 237
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Figure 11 Adapting to variability in inhomogeneous
Poisson request arrivals with hosting center configured
to host 2 internet services.
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Figure 12 Adapting to variability in inhomogeneous
Poisson request arrivals with hosting center configured
to host 3 internet services.

the overhead of the honey bee agorithm, i.e., the down-
time resulting from steady-state random switching.

To test for statistical significance of the results,
we use the standard method for paired comparisons.
This method is appropriate because within each single
experiment, the same random seed was used for each
algorithm. The sample means and standard errors of
the differences are given in Table 7. Every comparison
supports the qualitative conclusions above with confi-
dence better than 99%.

9 Conclusion

In this paper, we proposed a new honey bee allocation
algorithm based on self-organized behavior of foragers

Four Services
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Figure 13 Adapting to variability in inhomogeneous
Poisson request arrivals with hosting center configured
to host 4 internet services.

in honey bee colonies, and many similarities between the
nectar collection problem faced by ahoney bee colony
and the revenue collection problem faced by an internet
server colony. Results to date support the effectiveness
of the algorithm, particularly in the highly dynamic
and unpredictable (Arlitt & Jin, 1999) internet environ-
ment. The sub-optimality of the pattern of forager alloca-
tion in honey bee colonies, with respect to unchanging
flower patches, was mimicked by the sub-optimality of
the honey bee algorithm compared with the static algo-
rithm, for test cases with low variability.

Earlier in this paper, we have suggested that honey
bee colonies may have evolved to be responsive to
changesin flower patch availability and quality, and that
their alocation patterns may be considerably less sub-
optimal when evaluated in arealistic dynamic environ-
ment rather than a static one. We believe it would be
impossible to design a convincing experimental test of
thisidea, even if we had impossibly perfect knowledge
of present honey bee behavior, because there is no sat-
isfactory way to generate aternative evol utionary paths.
We could hypothesize, for example, a honey bee col-
ony with alinear dominance hierarchy among foragers,
so that the lowest ranking bee at a patch retrieved nec-
tar at the marginal rate, but it would be absurd to try to
justify any particular instantiation of such a colony.

But the computational results presented here do
provide some confirmatory evidence of adaptiveness.
The honey bee heuristic compares better with other algo-
rithms as the environment becomes more dynamic. This
would be consistent with the honey bee colony’s adap-
tation to dynamic environments.



238 Adaptive Behavior 12(3-4)

Table 7 Revenue difference from synthetically generated request stream.

Revenue (%)

# Reqg. Hon.—greedy Hon.—opt. Hon.—omni.

_ 1) - (9 - o

‘ Jn ‘ Jn ‘ Jn
2 4:1 -53,512.60 182523  -57,238.60 1906.43 —57,241.03 1906.82
4 4:1 —45,199.25 190343  —-74,105.75 1553.78 —74,112.69 1554.70
2 10:1 93,051.35 9055.47  103,789.20 8843.29  -233,929.51 6718.32
4 10:1 72,140.25 10,346.94 91,989.50 8600.71  —319,462.94 7154.13
2 Heavy 20,523.25 7,080.90 50,824.60 9912.45 —76,516.43  45,652.41
4 Heavy 78,487.50  60,630.87 38,857.75 17,382.23  -235,819.94  13,012.29
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