The Binomial Distribution

In many cases, it is appropriate to summarize a group of independent observations by the number of observations in the group that represent one of two outcomes. For example, the proportion of individuals in a random sample who support one of two political candidates fits this description. In this case, the statistic \hat{p} is the count X of voters who support the candidate divided by the total number of individuals in the group n. This provides an estimate of theparameter p, the proportion of individuals who support the candidate in the entire population.

The binomial distribution describes the behavior of a count variable X if the following conditions apply:

1: The number of observations n is fixed.
2: Each observation is independent.
3: Each observation represents one of two outcomes ("success" or "failure").
4: The probability of "success" p is the same for each outcome.
If these conditions are met, then X has a binomial distribution with parameters n and p, abbreviated $B(n, p)$.

Example

Suppose individuals with a certain gene have a 0.70 probability of eventually contracting a certain disease. If 100 individuals with the gene participate in a lifetime study, then the distribution of the random variable describing the number of individuals who will contract the disease is distributed $B(100,0.7)$.

Note: The sampling distribution of a count variable is only well-described by the binomial distribution is cases where the population size is significantly larger than the sample size. As a general rule, the binomial distribution should not be applied to observations from a simple random sample (SRS) unless the population size is at least 10 times larger than the sample size.

To find probabilities from a binomial distribution, one may either calculate them directly, use a binomial table, or use a computer. The number of sixes rolled by a single die in 20 rolls has a $B(20,1 / 6)$ distribution. The probability of rolling more than 2 sixes in 20 rolls, $P(X>2)$, is equal to $1-P(X \leq 2)=1-(P(X=0)+P(X=1)+P(X=2))$. Using the MINITAB command "cdf" with subcommand "binomial $\mathrm{n}=20 \mathrm{p}=0.166667$ " gives the cumulative distribution function as follows:

```
Binomial with n = 20 and p = 0.166667
```

X	$P(X<=x)$
0	0.0261
1	0.1304
2	0.3287
3	0.5665
4	0.7687
5	0.8982
6	0.9629
7	0.9887
8	0.9972

The corresponding graphs for the probability density function and cumulative distribution function for the $B(20,1 / 6)$ distribution are shown below:

Since the probability of 2 or fewer sixes is equal to 0.3287 , the probability of rolling more than 2 sixes $=1-0.3287=0.6713$.

The probability that a random variable X with binomial distribution $B(n, p)$ is equal to the value k, where $k=0,1, \ldots, n$, is given

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

by
, where

The latter expression is known as the binomial coefficient, stated as " n choose k," or the number of possible ways to choose k "successes" from n observations. For example, the number of ways to achieve 2 heads in a set of four tosses is " 4 choose 2 ", or $4!/ 2!2$! = $(4 * 3) /(2 * 1)=6$. The possibilities are $\{$ HHTT, HTHT, HTTH, TTHH, THHT, THTH \}, where " H " represents a head and " T " represents a tail. The binomial coefficient multiplies the probability of oneof these possibilities (which is $(1 / 2)^{2}(1 / 2)^{2}=1 / 16$ for a fair coin) by the number of ways the outcome may be achieved, for a total probability of $6 / 16$.

Mean and Variance of the Binomial Distribution

The binomial distribution for a random variable X with parameters n and p represents the sum of n independent variables Z which may assume the values 0 or 1 . If the probability that each Z variable assumes the value 1 is equal to p, then the mean of each variable is equal to $1 * p+0 *(1-p)=p$, and the variance is equal to $p(1-p)$. By the addition properties for independent random variables, the mean and variance of the binomial distribution are equal to the sum of the means and variances of the n independent Z variables,

$$
\begin{aligned}
& \mu_{X}=n p \\
& \sigma_{X}^{2}=n p(1-p)
\end{aligned}
$$

so

These definitions are intuitively logical. Imagine, for example, 8 flips of a coin. If the coin is fair, then $p=0.5$. One would expect the mean number of heads to be half the flips, or $n p=$ $8 * 0.5=4$. The variance is equal to $n p(1-p)=8 * 0.5 * 0.5=2$.

Sample Proportions

If we know that the count X of "successes" in a group of n observations with success probability p has a binomial distribution with mean $n p$ and variance $n p(1-p)$, then we are able to derive information about the distribution of the sample proportion \hat{p}, the count of successes X divided by the number of observations n. By the multiplicative properties of the mean, the mean of the distribution of X / n is equal to the mean of X divided by n, or $n p / n=p$.
This proves that the sample proportion \hat{p} is an unbiased estimator of the population proportion p. The variance of X / n is equal to the variance of X divided by n^{2}, or $(n p(1-p)) / n^{2}=$ $(p(1-p)) / n$. This formula indicates that as the size of the sample increases, the variance decreases.

In the example of rolling a six-sided die 20 times, the probability p of rolling a six on any roll is $1 / 6$, and the count X of sixes has a $B(20,1 / 6)$ distribution. The mean of this distribution is $20 / 6=3.33$, and the variance is $20 * 1 / 6 * 5 / 6=100 / 36=2.78$. The mean of the proportion of sixes in the 20 rolls, $X / 20$, is equal to $p=1 / 6=0.167$, and the variance of the proportion is equal to $(1 / 6 * 5 / 6) / 20=0.007$.

Normal Approximations for Counts and Proportions

For large values of \boldsymbol{n}, the distributions of the count \boldsymbol{X} and the sample proportion \hat{p} are approximately normal. This result follows from the Central Limit Theorem. The mean and variance for the approximately normal distribution of X are $n p$ and $n p(1-p)$, identical to the mean and variance of the $\operatorname{binomial}(n, p)$ distribution. Similarly, the mean and variance for the approximately normal distribution of the sample proportion are p and $(p(1-p) / n)$.

Note: Because the normal approximation is not accurate for small values of n, a good rule of thumb is to use the normal approximation only if $n p \geq 10$ and $n p(1-p) \geq 10$.

For example, consider a population of voters in a given state. The true proportion of voters who favor candidate A is equal to 0.40 . Given a sample of 200 voters, what is the probability that more than half of the voters support candidate A?

The count X of voters in the sample of 200 who support candidate A is distributed $B(200,0.4)$. The mean of the distribution is equal to $200 * 0.4=80$, and the variance is equal to $200 * 0.4 * 0.6=48$. The standard deviation is the square root of the variance, 6.93. The probability that more than half of the voters in the sample support candidate A is equal to the probability that X is greater than 100 , which is equal to $1-P(X \leq 100)$.

To use the normal approximation to calculate this probability, we should first acknowledge that the normal distribution is continuous and apply the continuity correction. This means that the probability for a single discrete value, such as 100 , is extended to the probability of the interval $(99.5,100.5)$. Because we are interested in the probability that X is less than or
equal to 100 , the normal approximation applies to the upper limit of the interval, 100.5. If we were interested in the probability that X is strictly less than 100 , then we would apply the normal approximation to the lower end of the interval, 99.5.

So, applying the continuity correction and standardizing the variable X gives the following:
$1-P(X \leq 100)$
$=1-P(X \leq 100.5)$
$=1-P(Z \leq(100.5-80) / 6.93)$
$=1-P(Z \leq 20.5 / 6.93)$
$=1-P(Z \leq 2.96)=1-(0.9985)=0.0015$. Since the value 100 is nearly three standard deviations away from the mean 80 , the probability of observing a count this high is extremely small.

Site : http://www.stat.yale.edu/Courses/1997-98/101/binom.htm

