examples and definitions

Integration is a way of adding slices to find the whole (extracted from Mathsisfun.com website)
Integration can be used to find areas, volumes, central points and many useful things. But it is easiest to start with finding the area under the curve of a function like this:

What is the area under $\mathbf{y}=\mathbf{f}(\mathbf{x})$?

Slices

We could calculate the function at a few points and add up slices of width $\boldsymbol{\Delta x}$ like this (but the answer won't be very accurate):

We can make $\boldsymbol{\Delta x}$ a lot smaller and add up many small slices (answer is getting better):

And as the slices approach zero in width, the answer approaches thetrue answer.
We now write $\mathbf{d x}$ to mean the $\boldsymbol{\Delta} \mathbf{x}$ slices are approaching zero in width.

That is a lot of adding up!
But we don't have to add them up, as there is a "shortcut". Because ...
... finding an Integral is the reverse of finding a Derivative. (So you should really know about Derivatives before reading more!)
Like here:

Example: What is an integral of $2 x$?
Integral
We know that the derivative of x^{2} is $2 x$.
$2 x \quad x^{2}$

Derivative

Notation

The symbol for "Integral" is a stylish "S" (for "Sum", the idea of summing slices):

After the Integral Symbol we put the function we want to find the integral of (called the Integrand),
and then finish with $\mathbf{d x}$ to mean the slices go in the x direction (and approach zero in width).
And here is how we write the answer:

$$
\int 2 x d x=x^{2}+C
$$

Definite Integral

A Definite Integral has start and end values: in other words there is an interval (a to b).

The values are put at the bottom and top of the " S ", like this:

Indefinite Integral
(no specific values)

Definite Integral
(from \mathbf{a} to \mathbf{b})

Example:

The Definite Integral, from 1 to 2 , of $\mathbf{2 x} d x$:

$$
\int_{1}^{2} 2 x d x
$$

The Indefinite Integral is: $\int \mathbf{2 x} d \mathbf{x}=\mathbf{x}^{2}+\mathbf{C}$

- At $x=1: \int 2 x d x=\mathbf{1}^{\mathbf{2}}+\mathbf{C}$
- At $x=2: \int 2 x d x=\mathbf{2}^{\mathbf{2}}+\mathbf{C}$

Subtract:

$$
\begin{aligned}
& \Rightarrow\left(2^{2}+C\right)-\left(1^{2}+C\right) \\
& \Rightarrow 2^{2}+C-1^{2}-C \\
& \Rightarrow 4-1+C-C=3
\end{aligned}
$$

And "C" gets cancelled out ... so with Definite Integrals we can ignore C.
In fact we can give the answer directly like this:

$$
\int_{1}^{2} 2 x d x=2^{2}-1^{2}=3
$$

We can check that, by calculating the area of the shape:

Yes, it has an area of 3.
(Yay!)

integral Let f be a function defined on the closed interval $[a, b]$. Take points $x_{0}, x_{1}, x_{2}, \ldots, x_{n}$ such that $a=x_{0}<x_{1}<x_{2}<\ldots<x_{n-1}<x_{n}=b$, and in each subinterval $\left[x_{i}, x_{i+1}\right]$ take a point c_{i}. Form the sum

$$
\sum_{i=0}^{n-1} f\left(c_{i}\right)\left(x_{i+1}-x_{i}\right) ;
$$

that is, $f\left(c_{0}\right)\left(x_{1}-x_{0}\right)+f\left(c_{1}\right)\left(x_{2}-x_{1}\right)+\ldots+f\left(c_{n-1}\right)\left(x_{n}-x_{n-1}\right)$. Such a sum is called a Riemann sum for f over $[a, b]$. Geometrically, it gives the sum of the areas of n rectangles, and is an approximation to the area under the curve $y=f(x)$ between $x=a$ and $x=b$.

The (Riemann) integral of f over $[a, b]$ is defined to be the limit I (in a sense that needs more clarification than can be given here) of such a

Riemann sum as n, the number of points, increases and the size of the subintervals gets smaller. The value of I is denoted by

$$
\int_{a}^{b} f(x) d x, \quad \text { or } \quad \int_{a}^{b} f(t) d t
$$

where it is immaterial what letter, such as x or t, is used in the integral. The intention is that the value of the integral is equal to what is intuitively understood to be the area under the curve $y=f(x)$. Such a limit does not always exist, but it can be proved that it does if, for example, f is a *continuous function on $[a, b]$.

If f is continuous on $[a, b]$ and F is defined by

$$
F(x)=\int_{a}^{x} f(t) d t
$$

then $F^{\prime}(x)=f(x)$ for all x in $[a, b]$, so that F is an *antiderivative of f.
Moreover, if an antiderivative ϕ of f is known, the integral

$$
\int_{a}^{b} f(t) d t
$$

can be easily evaluated: the *Fundamental Theorem of Calculus gives its value as $\phi(b)-\phi(a)$. Of the two integrals

$$
\int_{a}^{b} f(x) d x \text { and } \int f(x) d x
$$

the first, with limits, is called a definite integral and the second, which denotes an antiderivative of f, is an indefinite integral.
F is called an antiderivative, primitive function, primitive integral or an indefinite integral of the function $\boldsymbol{f} . \mathrm{F}$ is a differentiable function whose derivative is equal to the original function f. antiderivative Given a *real function f, any function ϕ such that $\phi^{\prime}(x)=f(x)$, for all x (in the domain of f), is an antiderivative of f. If ϕ_{1} and ϕ_{2} are both antiderivatives of a *continuous function f , then $\phi_{1}(x)$ and $\phi_{2}(x)$ differ by a constant. In that case, the notation

$$
\int f(x) d x
$$

may be used for an antiderivative of f, with the understanding that an arbitrary constant can be added to any antiderivative. Thus,

$$
\int f(x) d x+c
$$

where c is an arbitrary constant, is an expression that gives all the antiderivatives.

