Capacités	Mise en pratique
Comprendre la notation P _A (B) en termes de conditionnement	Soit A et B deux événements d'un même univers Ω , de probabilités non nulles. La probabilité conditionnelle $P_A(B)$ est la probabilité de l'événement B, sachant que l'événement A est réalisé. $P_A(B) = \frac{P(A \cap B)}{P(A)}$ L'événement A devient la référence. \Rightarrow 3 p. 65 et 16 p. 73
2. Construire un arbre pondéré en lien avec une situation donnée	Les événements A et \overline{A} forment une partition de l'univers Ω . L'événement B est réalisé soit en même temps que A, soit en même temps que son contraire \overline{A} . On traduit par un arbre pondéré : • sur les branches au premier niveau, on note les probabilités P(A) et P(\overline{A}); • puis pour le niveau suivant : • partant de A, on place les probabilités conditionnelles sachant A réalisé : • P _A (B) et P _A (\overline{B}) • partant de \overline{A} , on place les probabilités conditionnelles sachant \overline{A} réalisé : • P _A (B) et P _A (\overline{B}) La somme des probabilités sur les branches issues d'un même nœud est
3. Exploiter la lecture d'un arbre pondéré pour déterminer des probabilités	égale à 1. Sur l'arbre, en suivant les branches passant par A et B, on réalise l'événement A∩B. Pour calculer sa probabilité P(A∩B), on multiplie les probabilités sur les branches: P(A∩B) = P(A) × P _A (B)
4. Calculer la probabilité d'un événement connaissant ses probabilités conditionnelles relatives à une partition de l'univers	Au premier niveau, si on a une partition de l'univers A_1 , A_2 , A_3 , ainsi que les probabilités conditionnelles au second niveau, alors on peut calculer la probabilité d'un événement B: $P(B) = P(A_1 \cap B) + P(A_2 \cap B) + P(A_3 \cap B)$
	→ 5 p. 67 et 35 p